A rotating electric machine is an energy converter; we call it a motor when electrical energy is converted to mechanical energy, and an alternator when the conversion is reversed. In either case, the electric machine may be the same device even though its function is reversed.
Some attractive benefits that high-speed alternators or motors can offer include:
- Portability, small size and light weight
- Low maintenance
- Reliability in a wide range of environments
- Good efficiency
- Quiet operation
- Freedom from lubricants and other contaminants
There are different machine topologies for high-speed applications, and each has its own benefits and drawbacks. The permanent magnet machine type is considered the most superior in terms of performance due to its unique characteristics, including robust construction that is well suited for high-speed operation, and zero excitation power requirements that result in unity power factor operation.
Permanent Magnet (PM) Machines: Unmatched Efficiency for High-Speed Operations
When efficiency and weight are primary concerns, a machine with a permanent magnet rotor is clearly superior in most applications. This is because of the following:
- Zero excitation power is required.
- The permanent magnet machine can run at unity power factor (reactive stator current is not required for excitation). Efficiency of 95% or even higher can be achieved.
- The rotor is smooth, and the air gap is relatively large. This reduces windage loss, tooth ripple loss and provides a passage for cooling air.
- The rotor has high resistivity and very low permeability in permanent magnet machine. This inhibits losses that might otherwise be induced by stator flux ripples due to stator teeth and stator current. Permeability of rotor magnets is almost the same as air!
- Inverter size and loss is favored by unity power factor.
Other considerations that are also taken into account when selecting this type of permanent magnet machine for high-speed applications include:
- The magnet material is costly, but this is offset by benefits due to high efficiency, smaller inverter, easier cooling, smaller size of other parts and lower bearing loads.
- Spring rate of the attraction force between the rotor and stator is minimal because the rotor has very low permeance; the flux changes only slightly when rotor moves from center. This is an important advantage in soft bearing systems in permanent magnet machines where foil bearings or resilient bearings mounts are employed.
- The rotor structure is stiff, stable, and durable when it is encased in an Inconel or stainless steel hoop to retain magnets.
- The rotor is always excited. If a sustained fault occurs, the prime mover must shutdown to avoid a high temperature hazard. The typical short circuit current is 3 per unit.
- Magnets are not suitable for hot environments. Certain magnet materials have higher temperature capability than others, but the practical limit is about 200oC. Magnetization is irreversibly reduced when temperature approaches the magnet’s Curie temperature. The safe temperature for a magnet depends on its physical properties; the less expensive materials have a lower Curie temperature.
The motors require a synchronous start-up procedure; induction starting can overheat and demagnetize the rotor.
Induction Machines: Reliable and Cost-Effective Alternatives
Induction machines are the workhorse of industry. They are used everywhere and have many good features. The simple, low cost squirrel cage rotor structure is particularly appealing. Excitation is provided by the stator current, which induces and reacts with current in conductive rotor bars. This type of machine has the following characteristics:
- Since the stator current must include a reactive component to excite the machine, the stator and inverter bear the burden for this need. The magnitude of this exciting current is quite significant and is determined by the machine’s winding reactances, the airgap between the rotor and stator, and the permeance of the stator and rotor iron. Generally a power factor of 0.85, and an efficiency of .9 are reasonable expectations. An induction rotor has significant losses in its rotor iron and rotor cage.
- A short air gap is required to obtain a reasonable power factor. Since the rotor has high permeability, conditions exist to promote stray loss due to stator and rotor slots. Rotor laminations mitigate the loss.
- The rotor must slip with respect to rotating exciting flux. This produces a current in cage bars at slip frequency and the flux linking the rotor iron moves at slip frequency. If the rotor slip speed is 1% of rated speed, the rotor loss will be 1% of shaft power.
- The inverter must provide about 18% more Volt Amperes than required for a Unity PF machine.
- The spring rate of the attraction force between the rotor and stator is high because the rotor has very high permeance and the air gap is short; large flux change occurs when the rotor moves from center. This might be a problem in soft bearing systems in high-speed machines where foil bearings or resilient bearings mounts are employed.
- The rotor structure is a stack of ferromagnetic laminations held together by cage bars.
- Excitation can be varied to reduce losses at partial load; even turned off. The machine cannot produce a sustained short circuit current. Alternators may not self-excite with the load circuit connected.
- The rotor surface speed and allowable rotor temperature depend on the properties of the materials and construction used.
Synchronous Reluctance Machines: The Future of High-Performance Motors
Synchronous reluctance machines have a very stiff, high strength rotor that can operate at surface speeds up to 1,100 feet/second. The rotor can also operate at fairly high temperatures without detriment – possibly 600-700 ⁰F. The rotor is constructed of layers of ferromagnetic steel separated by equal layers of non-magnetic material to form salient poles of low reluctance in the direct axis, but high reluctance in the cross axis. Both materials are brazed together and have very high strength. The rotor is a smooth bimetallic cylinder. This type of machine has the following characteristics:
- The stator current must include a reactive component to excite the machine. The magnitude of this exciting current is very significant and is determined by the machine’s winding reactances, the airgap between the rotor and stator, and the permeance of the stator and rotor iron. Power factor of 0.7 and efficiency of 0.92 to 0.95 are probably realistic. The rotor surface losses are significant but the reluctance rotor can tolerate high temperature better than most other types.
- The rotor has salient slots. Also, a short air gap is required to obtain a reasonable power factor. The rotor has high permeability and is not laminated, which are conditions that promote stray losses.
- The rotor is synchronous with the rotating exciting flux. There is no current induced in the rotor other than stray eddy currents.
- Inverter must provide about 43% more Volt Amperes than required for a Unity PF machine.
- The spring rate of the attraction force between the rotor and stator is high because the rotor has very high permeance and the air gap is short; large flux change when rotor moves from center. This might be a problem in soft bearing systems in high-speed machines where foil bearings or resilient bearings mounts are employed.
Excitation can be varied to reduce losses at partial load; even turned off. The machine cannot produce a sustained short circuit current. Alternators may not self-excite with load circuit connected.
Frequently Asked Questions (FAQs) about Permanent Magnet Machines for High-Speed Applications
- What Applications employ PM Machines?
Due to their high-efficiency, compact size, and robustness, PM machines are used in electric vehicles, renewable energy systems, aerospace, industrial automation, and any other application that requires high-speed and efficient energy conversion.
- What are the Primary Advantages of Permanent Magnet (PM) Machines in high-speed applications?
PM machines operate reliably without lubricants in diverse environments. They feature superior efficiency, low maintenance, and quiet operation in a compact, lightweight package, making them ideal for many high-speed applications.
- How do PM Machines achieve high efficiency and performance?
They require zero excitation power, allowing unity power factor operation, smooth rotor design, large air gaps, high resistivity, and low rotor permeability. These factors enable PM machines to minimize losses while supporting efficient cooling.
- What considerations should be taken into account when selecting PM Machines?
Key factors include the cost of magnet material, magnet temperature limits, the need for synchronous start-up procedures, and ensuring that the rotor is designed for optimal stability and durability.
- Can PM Machines operate in high-temperature environments?
While PM Machines offer many advantages, their magnets have temperature limitations. The safe operating temperature depends on the magnet material, but most have a practical temperature limit of approximately 200°C due to the risk of irreversible demagnetization.
- How do PM Machines compare with Induction and Synchronous Reluctance Machines?
While induction machines are pervasive and cost-effective, they typically have lower efficiency
and power factor. Synchronous reluctance machines offer high rotor strength and temperature
resistance but require significant reactive power for excitation, which negatively impacts the machine’s efficiency and power factor.
- What are the Primary Challenges in implementing PM Machines?
Challenges include the high cost of rare earth magnets used in PM Machines, thermal management, and the need for precise control systems to handle the synchronous operation while protecting against fault conditions seamlessly.
- How are Research and Development (R&D) efforts addressing these challenges?
Ongoing R&D primarily focuses on developing new magnet materials with higher temperature tolerance, improving cooling techniques, and advancing control strategies. These improvements will significantly enhance the performance and reliability of PM Machines.