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Abstract— Oil & Gas (O&G) original equipment manufacturers 

(OEMs) have long used API 617 as the international standard of 

choice to guide turbomachinery rotordynamics requirements.  

Recently, the O&G industry has experienced a growing interest 

in applying active magnetic bearings (AMB) in high-speed 

applications, hermetically-sealed applications, and compressors 

with a large performance envelope.  As such, the API 617 

standards have recently been expanded to include a section (API 

617, 8th ed., “Annex E”) regarding evaluation of magnetic-

bearing-supported compressors.  New standards included in 

Annex E both compliment and compromise existing, well-

regarded international magnetic bearing rotordynamics 

standards, namely ISO 14839-3.  This paper reviews and 

compares the dynamics requirements included in API 617 8th 

edition Annex E with those of ISO 14839-3.  Notable, this paper 

compares the stability criteria of both standards by simulating the 

synchronous response, sensitivity transfer function, and closed-

loop transfer function of simple 1-D dynamic systems. 

I. PAPER GUIDELINES 

A. Introduction 

Several standards exist for the evaluation of the dynamic 
performance of turbomachinery supported by active magnetic 
bearings (AMB).  Of these, ISO 14839 is one of the most 
widely-used standards [1], as it includes industry-developed 
criteria for total vibration and closed-loop stability.  The 
standard limits the total permissible rotor-bearing vibration to a 
percentage of the auxiliary bearing clearance.  The standard 
requires the evaluation of closed-loop stability using the 
sensitivity transfer function (SNTF).  The standard does not 
distinguish between analytical and experimental criteria, 
meaning the same requirements are used for both design 
simulations and acceptance testing. 

API 617 has historically been the choice international 
standard used to qualify the rotodynamic performance of 
compressors and expander-compressors used for oil & gas 
(O&G) applications.  Most of these machines that have been 
developed to date are supported by fluid-film journal bearings.  
In recent years, there has been a push towards adapting AMB 
systems into these compressors to achieve higher speeds, 
expand the performance envelope, and allow for hermetically-
sealed applications.  Because of several differences in the 
dynamic characteristics of magnetic bearings and 
hydrodynamic bearings, as well as several practical 

considerations in the operation of the two bearings, API 617 (8th 
ed., 2014) has recently been amended to include Annex E [2], 
which details the dynamics performance requirements for 
AMB-supported compressors.  API 617 8th ed., Annex E 
evaluates total vibration as a function of rotor speed, consistent 
with its evaluation of total vibration for hydrodynamic-bearing-
supported compressors.  Swanson et al. [3] provide an overview 
of the new AMB requirements included in API 617 8th ed. 

API 617 8th ed. evaluates stability using the Level I and 
Level II stability analyses, which characterize the log decrement 
of the machine in the continuous operating speed range.  The 
Level I and Level II stability analyses are not used during 
acceptance testing.  The standard also evaluates stability of a 
critical speed using the calculation of an amplification factor 
(AF) and separation margin (SM) from the synchronous 
response of the rotor, as shown in Figure 1.  As the figure 
shows, the amplification factor is calculated by evaluating the 
frequencies associated with the peak response and the half-
power points.  Generally, the AF and SM are verified during a 
mechanical run test in order to verify the model and to ensure 
stability of any critical speeds close to or within the operating 
speed range. 

Due to the different methods by which dynamics criteria are 
evaluated in the two standards, it is not easily deducible what 
the technical differences are in the two standards.  The ISO 
14839 standard makes use of standard control system 
evaluation techniques, while API 617 leans on standard 
vibration evaluation techniques.  This paper explores the two 
standards and aims to answer the questions: 

1.) What are the technical differences between the two 
standards? 

2.) Is one standard more restrictive/conservative than the 
other? 

3.) Are there situations in which one standard is more 
useful than the other? 

 
While the two standards include several other dynamics 

criteria, the focus of this paper is to evaluate and compare the 
total vibration and stability criteria described in this section.  
Chiefly, this paper explains the differences between the AF, log 
decrement, closed-loop transfer function, and sensitivity 
transfer function of a closed-loop pole located within the 
operating speed range of an AMB-supported compressor. 

 



 
Figure 1. The iconic graphical depiction of amplification 

factor and separation margin, from API 617 8th ed. [2] 

 

B. A overview of ISO 14839 and API 617 stability and total 

vibration requirements 

API 617 includes 2 major design requirements for qualifying 

the stability of the rotor: 

1.) The Level I and Level II stability criteria 

2.) The AF and SM requirements 

 

The Level I and Level II stability criteria are used during 

the design phase to quantify the effects of cross-coupled 

stiffness coefficients on system stability.  This paper will focus 

on evaluating the second criteria, the AF and SM requirements. 

The AF and SM requirements are designed to ensure that 

the rotor does not operate close to a lightly-damped critical 

speed, so the rotor does not impart unbalance forces to the 

lightly-damped mode. The definition of the AF and SM are 

shown in Figure 1 above.  The AF is calculated by evaluating 

the half-power points of a critical speed, as shown in Eq. (1). 

 

𝐴𝐹 =
𝑁𝑐1

𝑁2−𝑁1
                                          (1) 

 
𝑁𝑐1 = 𝑆𝑝𝑒𝑒𝑑 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑡𝑜 𝑝𝑒𝑎𝑘 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 

𝑁1 = 𝑆𝑝𝑒𝑒𝑑 (< 𝑁𝑐1) 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑡𝑜 0.707 ∗ 𝑝𝑒𝑎𝑘 𝑟𝑒𝑠𝑝. 
𝑁2 = 𝑆𝑝𝑒𝑒𝑑 (> 𝑁𝑐1) 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑡𝑜 0.707 ∗ 𝑝𝑒𝑎𝑘 𝑟𝑒𝑠𝑝. 

 
Separation margin is defined as a percentage difference 

between the operating speed range and the critical speed, as 

shown in Eq. (2) 

 

 

𝑆𝑀 =
𝑁𝑚𝑖𝑛 − 𝑁𝑐

𝑁𝑚𝑖𝑛
 𝑓𝑜𝑟 𝑠𝑢𝑏𝑠𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑜𝑢𝑠 𝑚𝑜𝑑𝑒𝑠 

 

𝑆𝑀 =
𝑁𝑐 − 𝑁𝑚𝑎𝑥

𝑁𝑚𝑎𝑥
 𝑓𝑜𝑟 𝑠𝑢𝑝𝑒𝑟𝑠𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑜𝑢𝑠 𝑚𝑜𝑑𝑒𝑠   

 
𝑁𝑐 = 𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑠𝑝𝑒𝑒𝑑 

𝑁𝑚𝑖𝑛 = 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑠𝑝𝑒𝑒𝑑 
𝑁𝑚𝑎𝑥 = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑠𝑝𝑒𝑒𝑑                      (2) 

 

 

The AF and SM requirements are summarized as follows: 

1.) If the AF<2.5, the critical speed is considered to be 

well-damped and no separation margin is required. 

2.) If the SM is greater than 17% for subsynchronous 

modes and/or greater than 27% or supersynchronous 

modes, the mode is considered to be sufficiently 

removed from the operating speed range, such that it 

will not be excited by rotor unbalance forces.  Thus, 

there is no requirement for the amplification factor. 

3.) All other modes must obey the following criteria: 

𝑆𝑀𝑟 = 17 ∗ (1 −
1

𝐴𝐹 − 1.5
)  𝑓𝑜𝑟 𝑠𝑢𝑏𝑠𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑜𝑢𝑠 𝑚𝑜𝑑𝑒𝑠 

 

𝑆𝑀𝑟 = 10 + 17 ∗ (1 −
1

𝐴𝐹 − 1.5
)  𝑓𝑜𝑟 𝑠𝑢𝑝𝑒𝑟𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑜𝑢𝑠 𝑚𝑜𝑑𝑒𝑠 

 

𝑆𝑀𝑟 = 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛 𝑚𝑎𝑟𝑔𝑖𝑛 

𝐴𝐹 = 𝐴𝑚𝑝𝑙𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟                          (3) 

 

       The AF and SM are generally measured when possible 

during the unbalance verification test.  This measurement is 

performed for both model verification and to validate the 

robustness of the system.  API 617 8th ed. Annex E allows for 

a closed-loop transfer function (CLTF) to be performed in lieu 

of the unbalance verification test for model-validation 

purposes.  However, an unbalance verification test is still 

sometimes performed to attempt to validate the robustness of 

the system critical speeds.  The closed-loop transfer function 

is shown in Figure 2, and it is also described in detail in ISO 

14839-3.  In this simple magnetic bearing closed-loop model, 

the sensor, actuator, and amplifier dynamics are included in the 

plant. 

 

 
 

Figure 2. Model of CLTF allowed in API 617 8th ed. 

Annex E in lieu of unbalance verification test; 

measurement originally described in ISO 14839-3 

 

ISO 14839-3 requires the evaluation of stability on the 

basis of the SNTF.  The SNTF of a feedback control-loop 

system is a measure of the robustness of the system to changes 



in the plant.  For a typical feedback control system consisting 

of a plant and compensator, the SNTF is described by Figure 

3. 

 

 
 

Figure 3. Definition of SNTF for a standard control 

system 

 

       Notably, ISO 14839-3 gives the following criteria 

regarding the SNTF: 

1.) The SNTF gain is usually less than 3.0 (9.5 dB) at all 

frequencies for newly commissioned machines.  This 

range of SNTF values is referred to as Zone A. 

2.) SNTF gains between 3.0 (9.5 dB) and 4.0 (12 dB) are 

considered acceptable for long-term operation.  This 

range of SNTF values is referred to as Zone B. 

3.) SNTF gains above 4.0 (12 dB) and below 5.0 (14 dB) 

are generally considered unsatisfactory for long-term 

operation.  This range of SNTF values is referred to 

as Zone C. 

4.) SNTF gains above 5.0 (14 dB) are severe enough to 

cause damage to the machine. 

ISO 14839-3 also defines the open-loop and closed-loop 

transfer functions but sets no hard criteria for their evaluation.  

Typically, the maximum frequency analyzed/measured for all 

transfer functions corresponds to the bandwidth limitations of 

the controller. 

C. An overview of hydrodynamic bearing dynamics and 

active magnetic bearing dynamics 

This section provides a general comparison of the 

dynamics of hydrodynamic bearings and active magnetic 

bearings.  Hawkins et al. [4] provide a more detailed 

description and comparison of the dynamics of hydrodynamic 

bearings and active magnetic bearings. 

The rotordynamic coefficients of most hydrodynamic 

bearings can be modeled using a spring-damper (K-C) system, 

wherein the force generated by the bearing is a function of the 

relative displacement and velocity between rotor and stator.  

Equation 4 shows the bearing transfer function (Bearing TF) 

of a typical hydrodynamic bearing along one lateral axis: 

 
𝐹𝑏𝑟𝑔

𝑥
= 𝐾 + 𝐶𝑠                            (4) 

 

Many studies have also shown that including an inertia (or 

added mass) term (force proportional to relative acceleration) 

can be important in characterizing the high-frequency behavior 

of hydrodynamic bearings.  The inertia coefficient is not 

included in the development of this analysis. 

The rotordynamic coefficients of magnetic bearings are 

determined by the selected control architecture and 

corresponding control law for the system.  The simplest 

implementation of a magnetic bearing control architecture is a 

proportional-integral-derivative (PID) controller along each 

radial axis.  The transfer function of a PID controller is shown 

in Equation 5. 

𝐶𝑜𝑚𝑝𝑒𝑛𝑠𝑎𝑡𝑜𝑟 𝑇𝐹 = 𝐾𝑝 + 𝐾𝑑𝑠 +
𝐾𝑖

𝑠
         (5)  

 

Note that the proportional and derivative terms of the AMB 

PID transfer function behave dynamically similarly to the 

stiffness and damping terms of a hydrodynamic bearing.  The 

integral term serves to stabilize the low-frequency behavior of 

the system by removing any steady-state error. 

 

Most modern magnetic bearing control architectures will 

employ a ratio of higher-order polynomials in lieu of the 

derivative term.  Specifically, AMB systems will commonly 

use a steady-state gain, an integral term, and a ratio of nth order 

transfer functions, as shown in Eq. (6).  The orders of the 

numerator and denominator need not be equal; the order of the 

numerator must be equal to or less than the order of the 

denominator, such that the gain at high frequencies decreases 

with frequency.  If the order of the numerator were larger than 

that of the denominator, the gain would continually increase 

with frequency, causing high-frequency noise to be amplified.  

Note that the proportional term can be added in series as shown 

in Eq. (5), or in parallel, as shown in Eq. (6). 

 

𝐶𝑜𝑚𝑝𝑒𝑛𝑠𝑎𝑡𝑜𝑟 𝑇𝐹 = 𝐾𝑝 ∗
(𝑏𝑛𝑠𝑛+⋯+𝑏2𝑠2+𝑏1𝑠+𝑏0)

(𝑎𝑛𝑠𝑛+⋯+𝑎2𝑠2+𝑎1𝑠+𝑎0)
+

𝐾𝑖

𝑠
    

(6) 

 

In the system described above, all gains and coefficients 

are usually chosen to allow for robust closed-loop control, low 

response resulting from forced vibration, low response when 

traversing critical speeds, and noise immunity.  The 

coefficients of the nth order polynomials are generally 

calculated by combining several first and second order filters, 

such as lead, lag, lead-lag, low-pass, band-stop, and band-pass 

filters. 

 

D. Bridging the gap between controls and vibrations: A 

comparison of SDOF dynamics for a KCM system and a 

PD motion control system 

 

This analysis presents the similarities and differences 

between the two stability criteria applied in different situations.  

To gain a better appreciation for the similarities between the 

two criteria, the two criteria will be compared when applied to 

the forced response of a single-degree-of-freedom (SDOF) 

dynamic system.  Figure 4 shows a SDOF K-C-M system 

subjected to an external force, Fexc. 

The stiffness and damping are representative of a 

bearing/compensator and the mass is representative of the 

plant, usually the rotor for rotating machines.  The external 

force is representative of a dynamic force applied to the plant 



in addition to the bearing force, usually an unbalance vector or 

external dynamic load.   
 

 

 
 

Figure 4. SDOF forced spring-mass-damper system 

 

The ratio of the displacement of the mass, x, to the external 

force, Fexc, can be represented by: 

 
𝑋

𝐹𝑒𝑥𝑐
=

1

𝑚𝑠2+𝑐𝑠+𝑘
                              (7) 

 

In the typical frequency response analysis of a SDOF K-C-

M system, Fexc is a constant-amplitude sinusoidal function: 

 

𝐹𝑒𝑥𝑐 = 𝐴𝑓cos (𝑤𝑓𝑡)                       (8) 

The steady-state response amplitude of x(t) varies with the 

excitation frequency, wf, and the peak response occurs at the 

damped natural frequency, wd. 

    Though not immediately obvious at first, a dynamically-

equivalent active control system model can be built to control 

the motion (displacement) of the mass using a standard PD 

controller, rather than a spring and a damper, as shown in 

Figure 5. 

 

 
Figure 5. PD motion (displacement) control system 

subjected to external force 

 

  In a PD motion control system, the proportional term 

produces a control force proportional to displacement.  The 

derivative term produces a control force proportional to 

velocity.  As such, the Kp and Kd terms of a PD-based motion 

control system, behave dynamically similar to the K and C 

terms, respectively, of a SDOF K-C-M vibratory system.  

Because the input to the plant in Figure 4 is a force excitation, 

this transfer function is also known as the load disturbance 

transfer function.  The load disturbance transfer function of a 

PD motion control system can be expressed as: 

 
𝑥

𝐹𝑒𝑥𝑐
=

1

𝑚𝑠2+𝐾𝑑𝑠+𝐾𝑝
                         (8) 

 

Vance [5] defines a critical speed as a speed at which a 

local maximum of the synchronous response exists.  The 

main external force that causes synchronous motion (and thus 

critical speeds) of a rotor is usually the unbalance force.  It is 

widely known that the amplitude of the rotor unbalance force 

is proportional to the square of the rotor speed, ws, as shown 

in Eq. (9). 

 

𝐹𝑢𝑛𝑏 = 𝑚𝑒𝑤𝑠
2 ∗ cos (𝑤𝑠𝑡)                      (9) 
 

       This represents a major deviation from standard SDOF 

system dynamics theory.  A result of this phenomenon is that 

a critical speed will not directly correspond to wd.  Rather, the 

peak response will always occur at a speed above wd.  This 

phenomenon also indirectly results in other apparent 

deviations from standard SDOF dynamics.  Notably, an 

increase in bearing damping will result in a decrease of wd, but 

an increase in the critical speed. 

It is important to understand this distinction because API 

617 calculates AF based on the synchronous response of the 

rotor, rather than the single-axis forced response (wherein the 

excitation force has a constant amplitude vs. frequency).  The 

CLTF and SNTF from ISO 14839 are calculated using a 

single-axis forced response with a constant-amplitude 

excitation force. 

E. Comparison of damping ratio, AF, CLTF, and SNTF for 

SDOF dynamic system 

A comparison of the calculated damping ratio, AF, peak 

CLTF, and peak SNTF is presented for the SDOF control 

system shown in Figure 4.  Note that the AF is calculated in 

two ways in this analysis: 

1.) Using a single-axis excitation with constant force 

amplitude 

2.) Using an excitation with the amplitude of the force 

varying with the frequency squared, to mimic an 

unbalance response 

 

A comparison is presented for damping ratios of 15.0%, 

17.5%, and 20.0%.  Table 1 summarizes the characteristics of 

the system for the various SDOF simulation cases. 

 

Table 1. System characteristics for SDOF dynamic 

control system simulation cases 

Case  

#  

Damping 

Ratio 

Mass 

(m), lb 

Stiffness 

(k), 

lbf/in 

Damping 

(c), lbf-

s/in 

1 0.150 50 100,000 45.5 

2 0.175 50 100,000 39.8 

3 0.200 50 100,000 34.1 

 

       Figure 6 shows the bearing transfer function for the 3 cases 

under consideration.  As the damping decreases, the magnitude 

of the gain and phase plots decreases.  A positive damping 



corresponds to a positive phase difference between the bearing 

force and rotor-bearing relative displacement.  The magnitude 

of the effective stiffness corresponds to the magnitude of the 

bearing TF. 

 

       Figure 7 shows the load disturbance TF for the SDOF 

system.  When using this TF to calculate the AF, case 1 

produces an AF of 2.27, case 2 produces an AF of 2.72, and 

case 3 produces an AF of 3.26.  This TF is not generally used 

to calculate AF but is a common TF used in the evaluation of 

AMB-supported systems. 

 

Figure 6. Bearing TF for all 3 SDOF cases 

 

 
Figure 7. Load Disturbance (constant amplitude force) TF 

of SDOF dynamic system 

 

       Figure 8 shows the “unbalance response” transfer function 

for the SDOF system.  This transfer function employs a force 

amplitude that is proportional to the square of the frequency.  

When using this TF to calculate the AF, case 1 produces an AF 

of 2.08, case 2 produces an AF of 2.48, and case 3 produces an 

AF of 2.98.  For case 1 and 2, no separation margin to the mode 

would be required per API 617.  If the AF and SM 

requirements of API 617 are applied to the unbalance response 

TF for case 3, there would be an 8.4% or 18.4% separation 

margin required between the operating speed range and the 

mode, depending on whether the mode is subsynchronous or 

supersynchronous, respectively. 

       Note that the AFs are always lower when using the 

unbalance TF compared to the load disturbance TF.  As such, 

the load disturbance transfer function is always more 

conservative than the unbalance response TF.  Most notably, 

in the case of a SDOF system mode with a 17.5% damping 

ratio, the unbalance response TF has an AF below 2.5 while 

the load disturbance TF has a AF above 2.5.  When applying 

API 617 criteria to the unbalance response TF, the mode 

requires no separation to the operating speed range.  If API 617 

stability criteria were to be applied to the load disturbance 

response TF (which is not the usual case), there would be a 

3.1% or 13.1% separation margin required between the 

operating speed range and the mode, depending on whether the 

mode is subsynchronous or supersynchronous, respectively. 

 

 
Figure 8. “Unbalance response” (force amplitude varies 

with square of frequency) TF 

 
Figure 9. CLTF of SDOF dynamic system 

 

       Figure 9 shows the CLTF for the SDOF system.  Neither 

criterion places an amplitude limit on the closed loop transfer 

function.  API 617 gives an option to use this TF for model 



verification.  This is generally a quicker test than the unbalance 

response verification test as it requires no special setup or 

instrumentation, beyond being able to spin the unit to full 

speed.  Note that the CLTF has a similar shape as the load 

disturbance TF for a SDOF system, as both are closed-loop 

transfer functions employing constant-amplitude excitations. 

 

       Figure 10 shows the sensitivity TF for the SDOF system.  

As stated previously, this TF is described in ISO 14839-3 and 

is the main criteria used to evaluate stability in that standard.  

The results of the SDOF system show that there is a peak 

sensitivity of 8.12 dB for case 1, 9.25 dB for case 2, and 10.6 

dB for case 3.  As such, cases 1 and 2 fall under zone A of the  

 
Figure 10. Sensitivity TF of SDOF dynamic system 

      

     Table 2 summarizes the results of the SDOF stability 

analysis for all 3 cases. 

 

Table 2. Results of SDOF stability anlaysis 

Case  

#  

AF from 

Unbalance 

Response 

TF, - 

Required SM 

(subsynch., 

supersynch.), 

% 

SNTF 

peak 

gains, 

- 

ISO 

14839 

SNTF 

zone 

1 2.08 0,0 8.12 A 

2 2.48 0,0 9.25 A 

3 2.98 8.4,18.4 10.6 B 

 

For cases 1 and 2, applying ISO 14839-3 to the results of 

the sensitivity TF yields relatively similar results to the 

application of API 617 to the AFs calculated from the 

unbalance TF.  Cases 1 and 2 show acceptable stability; per 

ISO 14839-3, the peak sensitivity gains would be considered 

acceptable for newly commissioned machines (zone A). 

Case 3 shows a sensitivity gain that is considered unusually 

high for newly commissioned machines (zone A), but 

acceptable damping for long-term field operation (zone B), 

according to ISO 14839.  API 617 may be considered more 

restrictive for case 3 because it specifies a restriction on the 

separation margin, whereas ISO 14839 allows for long-term 

operation with no design changes required. 

F. Comparison of damping ratio, AF, CLTF, and SNTF for 

higher-order bearings 

Consider the case where the PD controller in Figure 5 is 

replaced with a higher-order transfer function.  This is the 

typical case for most AMB systems.  In this section, the 

damping ratio, AF, CLTF, and SNTF will be compared for a 

single 40 lb mass controlled by a compensator than can be 

represented as a ratio of higher-order polynomials, as shown 

earlier in Eq. (6).  For this analysis, the numerator is a 24th 

order polynomial and the denominator is a 25th order 

polynomial.  Table 3 summarizes the coefficients used for this 

analysis. 

 

Table 3. Coefficients of AMB bearing transfer function 

used for this analysis.  Note that the transfer function is 

the ratio of force to displacement, in units of lbf/in 

n Numerator, bn Denominator, an, 

25 N/A 1 

24 6.797e09 1.578e04 

23 5.312e13 1.236e08 

22 3.405e17 7.184e11 

21 1.533e21 3.184e15 

20 5. 282e24 1.117e19 

19 1.46e28 3.181e22 

18 3.196e31 7.382e25 

17 5.499e34 1.392e29 

16 7.526e37 2.136e32 

15 8.345e40 2.684e35 

14 7.628e43 2.787e38 

13 5.825e46 2.41e41 

12 3.748e49 1.749e44 

11 2.045e52 1.072e47 

10 9.484e54 5.575e49 

9 3.742e57 2.468e52 

8 1.253e60 9.311e54 

7 3.547e62 2.988e57 

6 8.407e64 8.114e59 

5 1.643e67 1.843e62 

4 2.587e69 3.436e64 

3 3.174e71 5.089e66 

2 2.909e73 5.648e68 

1 1.878e75 4.186e70 

0 7.058e76 1.544e72 

Proportional term 32,000 N/A 

 

Figure 11 shows the magnetic bearing TF.  Note that, as 

with the bearing TF for a standard K-C model, a positive phase 

difference between force and displacement represents positive 

damping.  Note that with a magnetic bearing, there is usually 

always a region of negative damping (negative phase).  Also 

note that the magnetic bearing TF can feature abrupt changes 

in stiffness versus frequency, as shown. 

 

Figure 12 shows the unbalance response TF, showing two 

distinct critical speeds and a third critical speed composed of 

multiple local response peaks.  The AFs of the critical speeds 

are shown, as calculated from by the half-power method shown 



earlier in Figure 1.  Note that the half-power point corresponds 

to the point at which the peak response decreases by 3 dB 

(0.707 = -3 dB). 

 

 

 
Figure 11. Magnetic bearing TF used for AMB-supported 

mass dynamic system analysis 

 

        

 

       The unbalance response shows a critical speed at 20.5 Hz.  

The AF of this critical speed is 2.27.  API 617 concludes that 

this critical speed is well-damped and does not require any 

separation to the operating speed range. 

 

       The unbalance response also shows a critical speed at 99 

Hz.  The AF of this critical speed is 2.64.  Because this AF is 

larger than 2.5, separation is required for this critical speed to 

the operating speed range.  If the mode is subsynchronous, 

6.6% separation margin is required, per Eq. (2).  If the mode 

is supersynchronous, 16.6% separation margin is required. 

 

       Lastly, the unbalance response shows three closely-

spaced, local peaks centered around 497 Hz.  API 617 does not 

specify what to do in the situation of closely-spaced peak 

responses, as this situation is seldom encountered when 

hydrodynamic bearings are used.  This situation is often 

encountered when magnetic bearings are used, due to the 

presence of additional bearing “control”, or “support”, modes; 

these additional modes often stem from the zeros and poles of 

the compensator.  The AF calculated from the peak at 497 Hz 

is 3.41.  Based on this AF, the required separation margin is 

either 9.9% or 19.9% depending on whether the mode is 

subsynchronous or supersynchronous, respectively. 

 

 

 

 
 

Figure 12. Unbalance response TF for AMB-supported 

mass dynamic system, with AFs calculated for each 

response peak 

 

 

       Figure 13 shows the SNTF for the AMB-supported mass.  

The results of the SNTF, as interpreted by ISO 14839-3, show 

that the closed-loop poles at 20.5 Hz and 98 Hz are very stable.  

This also confirms that the controller is quite robust to changes 

in the plant near the frequencies of these two poles.  Both of 

these poles would under zone A (“newly commissioned 

machines”) of the ISO 14839-3 criteria. 

 

       The SNTF gain in the regions near the 442 (13.3 dB) Hz 

and 566 Hz (12.6 dB) closed-loop poles falls into zone C 



(“unsatisfactory for long-term operation”) of the ISO 14839-3 

standard.  This means that these poles are underdamped and 

will be sensitive to changes in the plant. 

 

 
Figure 13. SNTF for AMB-supported mass dynamic 

system, with peak sensitivities shown 

 

       The SNTF gain in the region surrounding the pole at 495 

Hz (14.9 dB) falls into zone D (“severe enough to cause 

damage”) of ISO 14839-3.  This means that this pole is 

marginally stable and will be very sensitive to changes in the 

plant. 

 

       Table 4 summarizes the stability results of this AMB-

supported mass system. 

 

Table 4. Summary of results of AMB-supported mass 

simulation 
Local peak 

frequency 

(Hz) 

AF, 

- 

Interpretation 

of AF, per API 

617 

Peak 

SNTF 

gain, 

dB 

Interpretation 

of SNTF, per 

ISO 14839-3 

20.5 2.2

7 

Stable -20.7 Stable 

98 2.6

4 

Requires 

separation 

margin 

-8.2 Stable 

495 3.4

1 

Requires 

separation 

margin 

14.9 Not 

satisfactory 

 

 

When comparing the two methods of evaluating stability, there 

are some differences in the interpretation of the stability of the 

various modes of this system: 

1.) API 617 requires separation margin to the mode at 99 

Hz, but ISO 14839 deems this mode acceptable 

without any change to the design. 

2.) API 617 requires separation margin to the mode at 

497 Hz, but ISO 14839 deems this mode to be 

unacceptable for long-term operation, regardless of 

separation margin. 

 

Table 5 summarizes the closed-loop poles of this system 

associated with, or close in frequency to, the local peaks 

observed in Figure 11.  As mentioned earlier, the closed-loop 

pole frequencies are not always equal to the critical speeds, 

because the unbalance force amplitude increases with 

frequency. 

 

Table 5. Close loop poles and associated damping ratios of 

AMB-supported mass dynamic system 

Closed-loop pole 

frequency, Hz 

Damping Ratio, % 

19.7 19.1 

80.7 22.7 

101 17.7 

439 4.2 

493 8.4 

573 3.4 

        

 

Figure 14 shows the load disturbance TF, using a 

constant amplitude excitation.  As with the SDOF system, if 

the AF is calculated using this TF, the AF is larger than that 

calculated using the unbalance response TF.  The load 

disturbance TF shows AF larger than 2.5 for all three local 

response peaks. 

 

       Figure 15 shows the CLTF, as defined in ISO 14839-3 and 

used in API 617.  The closed-loop transfer function only shows 

a significant peak around the modes at approximately 500 Hz.  

The lower-frequency modes have a low closed-loop response. 



 

 
Figure 14. Load Disturbance TF for AMB-supported 

mass dynamic system 

 
Figure 15. CLTF for AMB-supported mass dynamic 

system 

 

Figure 16 shows the effect of varying the mass and the 

proportional gain on the unbalance response of the system.  As 

can be seen, the modes close to 500 Hz are quite sensitive to 

these parameter changes.  When decreasing the mass to 70% 

of the original value, the amplification factor of a mode close 

to 576 Hz increase to 19.2.  When increasing the proportional 

gain by 30%, the amplification factor of a mode close to 568 

Hz increases to 142!  On the other hand, the two modes close 

to 20 and 100 Hz, respectively, are not significantly affected 

by the varied properties.  Both of these modes retain their 

general response shape, implying that these modes are stable 

and robust to changes in the plant gain and have adequate gain 

margin. 

 

 
Figure 16. Unbalance response TF with proportional gain 

(top) and mass (bottom) varied 

 

Based on the results in Tables 4 and 5, coupled with the 

results in Figure 12, 13, and 16, it can be concluded that API 

617 and ISO 14839-3 both correctly evaluate the stability of 

the mode close to 20 Hz.  However, the AF and SM 

requirements of API 617 are overly-restrictive in their 

evaluation of the mode close to 100 Hz, as Table 5 and Figure 

16 both show that this mode has adequate damping, is robust 

to parameter changes, and has adequate gain margin.  The 

SNTF requirement of ISO 14839 correctly assesses this mode 

as stable for long-term operation, and consistent with the 

stability of a newly-commissioned machine.  The AF and SM 

requirements of API 617 also do not adequately assess the 

marginally-stable modes close to 500 Hz, as API 617 allows 

for operation near those modes provided there is a separation 

margin between the mode and operating speed range.  The 

SNTF requirement of ISO 14839 correctly assesses that these 

modes are marginally-stable and not robust to parameter 

changes, and does not allow for long-term operation, 

regardless of any separation margin between the operating 

speed range and modes. 

 



G. Conclusions 

The results of this analysis show that the SNTF 

requirement, as described by ISO 14839-3 and the AF and SM 

requirements, as described by API 617 8th ed, may be 

comparable in evaluating the stability of dynamic systems 

supported by hydrodynamic bearings or magnetic bearings 

utilizing 1st-order (e.g. PID) control.  Generally-speaking, the 

AF and SM requirements are more restrictive than the SNTF 

requirement for such systems. 

Additionally, the results of the analyses described in this 

paper show that the SNTF requirement, as described by ISO 

14839-3, is better-suited for evaluating the stability of an 

AMB-supported dynamic system utilizing high-order control.  

The SNTF can adequately assess the stability and robustness 

of closed-loop poles, regardless of their proximity to other 

modes or minor parameter changes in the plant.  On the other 

hand, the AF and SM requirement, as described in API 617, 

was shown to be: 

1.) A good evaluator of stability for some modes 

2.) Overly-restrictive in its evaluation of stability for 

some modes 

3.) A poor evaluator of stability of closely-spaced, 

lightly-damped modes 
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